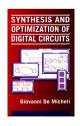
Heuristic Two-level Logic Optimization

Giovanni De Micheli Integrated Systems Laboratory



Module 1

- **◆**Objective
 - **▲** Data structures for logic optimization
 - **▲** Data representation and encoding

Some more background

- **◆** Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- Cofactor of f with respect to variable x_i

$$\triangle f_{xi} = f(x_1, x_2, ..., 1, ..., x_n)$$

◆ Cofactor of f with respect to variable x_i^{*}

$$\Delta f_{xi}$$
 = f ($x_1, x_2, ..., 0, ..., x_n$)

◆ Boole's expansion theorem:

$$\triangle$$
f ($x_1, x_2, ..., x_i, ..., x_n$) = $x_i f x_i + x_{i'} f x'_i$

▲ Also credited to Claude Shannon

Example

- ◆Function: f = ab + bc + ac
- **◆**Cofactors:

$$\Delta f_a = b + c$$

$$\Delta f_{a'} = bc$$

◆Expansion:

$$\triangle f = a f_a + a' f_{a'} = a(b + c) + a' bc$$

Unateness

- **♦** Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- **◆**Positive unate in x_i when:

$$\triangle f_{xi} \ge f_{xi}$$

◆ Negative unate in x_i when:

$$\triangle f_{xi} \leq f_{xi}$$

◆A function is positive/negative unate when positive/negative unate in all its variables

Operators

- **♦** Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- **◆**Boolean difference of f w.r.t. variable x_i:

$$\triangle \partial f/\partial x_i \equiv f_{xi} \oplus f_{xi'}$$

◆ Consensus of f w.r.t. variable x_i:

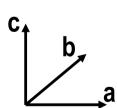
$$\triangle C_{xi} \equiv f_{xi} \cdot f_{xi'}$$

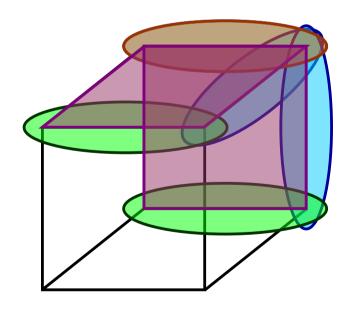
◆ Smoothing of f w.r.t. variable x_i:

$$\triangle S_{xi} \equiv f_{xi} + f_{xi}$$

Example f = ab + bc + ac

- ◆The Boolean difference $\partial f/\partial a = f_a \oplus f_{a'} = b'c + bc'$
- ♦ The consensus $C_a = f_a \cdot f_{a'} = bc$
- **◆**The smoothing $S_a \equiv f_a + f_{a'} = b + c$





Generalized expansion

- ◆ Given:
 - ▲ A Boolean function f.
 - **▲** Orthonormal set of functions:

$$\phi_i$$
, i = 1, 2, ..., k

◆ Then:

$$\blacktriangle f = \sum_{i}^{k} \phi_{i} \cdot f_{\phi_{i}}$$

- ▲ Where f_{ϕ_i} is a generalized cofactor.
- **◆** The generalized cofactor is not unique, but satisfies:

$$\blacktriangle f \cdot \phi_i \subseteq f \phi_i \subseteq f + \phi_i'$$

Example

- ◆ Function: f = ab + bc + ac
- ◆ Basis: ϕ_1 = ab and ϕ_2 = a' + b'.
- Bounds:
 - \triangle ab \subseteq f $_{\phi_1}\subseteq$ 1
 - \triangle a' bc + ab' c \subseteq f $_{\phi_2}$ \subseteq ab + bc + ac
- Cofactors: $f_{\phi_1} = 1$ and $f_{\phi_2} = a'$ bc + ab' c.

$$f = \phi_1 f_{\phi_1} + \phi_2 f_{\phi_2}$$

= ab1 + (a' + b')(a' bc + ab' c)
= ab + bc + ac

Generalized expansion theorem

- Given:
 - ▲ Two function f and g.
 - ▲ Orthonormal set of functions: ϕ_i , i=1,2,...,k
 - **▲** Boolean operator ⊙
- **♦** Then:

$$\blacktriangle f \odot g = \sum_{i}^{k} \phi_{i} \cdot (f \phi_{i} \odot g \phi_{i})$$

◆ Corollary:

Matrix representation of logic covers

- ◆Representations used by logic minimizers
- **◆**Different formats
 - ▲ Usually one row per implicant
- **◆**Symbols:

◆Encoding:

Advantages of positional cube notation

- ◆Use binary values:
 - **▲**Two bits per symbols
 - ▲ More efficient than a byte (char)
- Binary operations are applicable
 - ▲Intersection bitwise AND
 - **▲**Supercube bitwise OR
- Binary operations are very fast and can be parallelized

Example

```
    10
    11
    11
    10

    10
    01
    11
    11

    01
    10
    11
    11

    01
    11
    10
    01
```

Cofactor computation

- \bullet Cofactor of α w.r. to β
 - ▲Void when α does not intersect β

$$\triangle a_1 + b_1' \quad a_2 + b_2' \quad \dots \quad a_n + b_n'$$

- Cofactor of a set $C = \{\gamma_i\}$ w.r. to β :
 - \triangle Set of cofactors of γ_i w.r. to β

14

Example f = a'b' + ab

10

- ◆Cofactor w.r. to 01 11
 - ▲First row void
 - ▲Second row 11 01
- **◆**Cofactor $f_a = b$

01	01	
00	00	
01	11	
00	00	void
10	00	
11	01	

10

Multiple-valued-input functions

- Input variables can take many values
- Representations:
 - ▲ Literals: set of valid values
 - ▲ Function = sum of products of literals
- Positional cube notation can be easily extended to mvi
- Key fact
 - ▲ Multiple-output binary-valued functions represented as mvi single-output functions

16

Example

◆2-input, 3-output function:

$$\triangle f_1 = a'b' + ab$$

$$\triangle f_2 = ab$$

$$\triangle f_3 = ab' + a'b$$

◆Mvi representation:

10 10 100 10 01 001 01 10 001 01 01 110

Module 2

- Objective
 - **▲**Operations on logic covers
 - **▲**Application of the recursive paradigm
 - **▲**Fundamental mechanisms used inside minimizers

Operations on logic covers

- Recursive paradigm
 - ▲ Expand about a mv-variable
 - ▲ Apply operation to co-factors
 - ▲ Merge results
- Unate heuristics
 - **▲** Operations on unate functions are simpler
 - ▲ Select variables so that cofactors become unate functions
- Recursive paradigm is general and applicable to different data structures
 - ▲ Matrices and binary decision diagrams

19

Tautology

- Check if a function is always TRUE
- **◆** Recursive paradigm:
 - ▲ Expend about a mvi variable
 - ▲ If all cofactors are TRUE, then the function is a tautology
- Unate heuristics
 - ▲ If cofactors are unate functions, additional criteria to determine tautology
 - ▲ Faster decision

Recursive tautology

TAUTOLOGY:

▲ The cover matrix has a row of all 1s. (Tautology cube)

NO TAUTOLOGY:

▲ The cover has a column of 0s. (A variable never takes a value)

◆ TAUTOLOGY:

▲ The cover depends on one variable, and there is no column of 0s in that field

◆ Decomposition rule:

▲ When a cover is the union of two subcovers that depend on disjoint sets of variables, then check tautology in both subcovers

- **◆Select variable a**
- ◆Cofactor w.r. to a' is

11 11 11 – Tautology.

◆Cofactor w.r. to a is:

01	01	11	
01	11	01	
01	10	10	
10	11	11	
00 00 00 00	01 11 10 11 00	11 01 10 11 00	
11	01	11	
11	11	01	
11	10	10	

22

Example (2)

- **◆Select variable b**
- ◆Cofactor w.r. to b' is

- ◆No column of 0 Tautology
- ◆Cofactor w.r. to b:

Has row of 1s

◆Function is a *TAUTOLOGY*

11 11 11	01 11 10	11 01 10	
11	00	11	
11	00	11	
11	00	01	
11	10	10	
00	00	00	
11	11	01	
11	11	0 0	

Containment

◆Theorem:

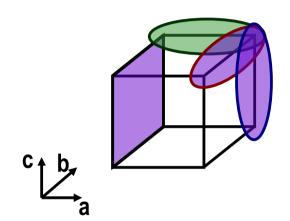
 $\triangle A$ cover F contains an implicant α if and only if F_{α} is a tautology

◆Consequence:

▲ Containment can be verified by the tautology algorithm

Example f = ab + ac + a'

- ◆Check covering of bc: 11 01 01.
- **◆**Take the cofactor:



◆Tautology – bc is contained by f.

Complementation

Recursive paradigm

$$\Delta f' = x f'_x + x' f'_{x'}$$

- **♦**Steps:
 - **▲Select variable**
 - **▲**Compute co-factors
 - **▲**Complement co-factors
- Recur until cofactors can be complemented in a straightforward way

Termination rules

- The cover F is void
 - ▲ Hence its complement is the universal cube
- ◆ The cover F has a row of 1s
 - ▲ Hence F is a tautology and its complement is void
- **◆** The cover **F** consists of one implicant.
 - ▲ Hence the complement is computed by DeMorgan's law
- ◆ All implicants of F depend on a single variable, and there is not a column of 0s.
 - ▲ The function is a tautology, and its complement is void

Unate functions

◆ Theorem:

▲ If f is positive unate in x, then

$$\nabla f' = f'_x + \chi' f'_{\chi'}$$

▲ If f is negative unate in x, then

$$\nabla f' = x f'_x + f'_{x'}$$

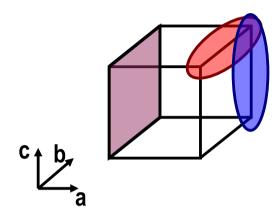
◆ Consequence:

- **▼** Complement computation is simpler
- **▼** Follow only one branch in the recursion

Heuristics

▲ Select variables to make the cofactor unate

Select binate variable a



◆Compute cofactors:

 $\triangle F_{a'}$ is a tautology, hence $F'_{a'}$ is void.

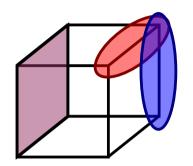
▲F_a yields:

11 01 11 11 11 01

Example (2)

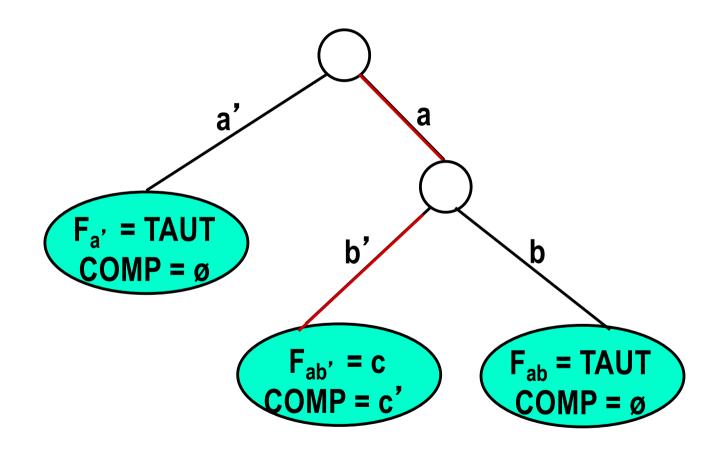
- Select unate variable b
- **◆** Compute cofactors:
 - ▲ F_{ab} is a tautology, hence F' _{ab} is void
 - $Arr F_{ab}$ = 11 11 01 and its complement is 11 11 10

- ▲11 11 10 intersected with Cube(b') = 11 10 11 yields 11 10 10
- ▲ 11 10 10 intersected with Cube(a) = 01 11 11 yields 01 10 10
- **◆** Complement: F' = 01 10 10



Example (3)

◆Recursive search:



Complement: a b' c'

31

Boolean cover manipulation summary

- Recursive methods are efficient operators for logic covers
 - **▲**Applicable to matrix-oriented representations
 - ▲ Applicable to recursive data structures like BDDs
- Good implementations of matrix-oriented recursive algorithms are still very competitive
 - **▲**Heuristics tuned to the matrix representations

Module 3

- Objectives
 - **▲**Heuristic two-level minimization
 - **▲**The algorithms of ESPRESSO

Heuristic logic minimization

- Provide irredundant covers with "reasonably small" sizes
- Fast and applicable to many functions
 - ▲ Much faster than exact minimization
- Avoid bottlenecks of exact minimization
 - ▲ Prime generation and storage
 - ▲ Covering
- Motivation
 - ▲ Use as internal engine within multi-level synthesis tools

Heuristic minimization -- principles

- Start from initial cover
 - ▲ Provided by designer or extracted from hardware language model
- Modify cover under consideration
 - **▲** Make it prime and irredundant
 - ▲ Perturb cover and re-iterate until a small irredundant cover is obtained
- Typically the size of the cover decreases
 - **▲** Operations on limited-size covers are fast

Heuristic minimization - operators

- Expand
 - ▲ Make implicants prime
 - ▲ Removed covered implicants
- ◆ Reduce
 - ▲ Reduce size of each implicant while preserving cover
- ◆ Reshape
 - ▲ Modify implicant pairs: enlarge one and reduce the other
- Irredundant
 - ▲ Make cover irredundant

Example

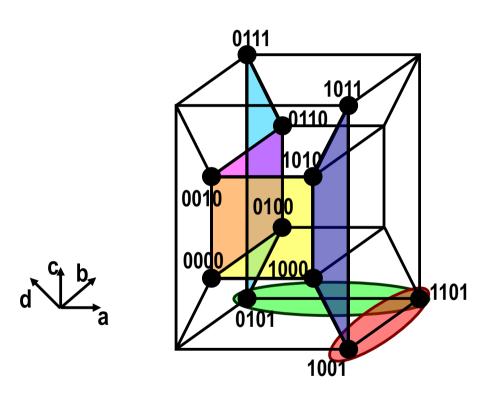
◆Initial cover

▲ (without positional cube notation)

0000	1
0010	1
0100	1
0110	1
1000	1
1010	1
0101	1
0111	1
1001	1
1011	1
1101	1

Example

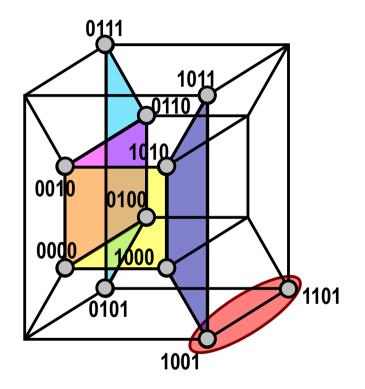
◆Set of all primes

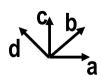


α	0 * * 0	1
β	* 0 * 0	1
Y	0 1 * *	1
δ	10**	1
3	1 * 0 1	1
ζ	* 1 0 1	1

Example of expansion

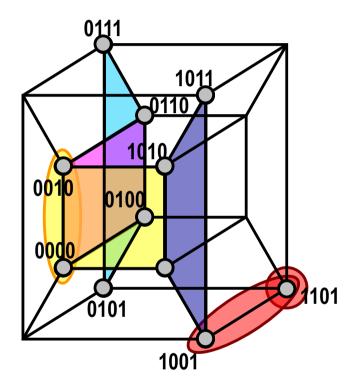
- **◆** Expand 0000 to $\alpha = 0**0$.
 - ▲ Drop 0100, 0010, 0110 from the cover.
- Expand 1000 to β = *0*0.
 - ▲ Drop 1010 from the cover.
- **◆** Expand 0101 to y = 01**.
 - ▲ Drop 0111 from the cover.
- Expand 1001 to δ = 10**.
 - ▲ Drop 1011 from the cover.
- Expand 1101 to ε = 1*01.
- \bullet Cover is: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.





Example of reduction

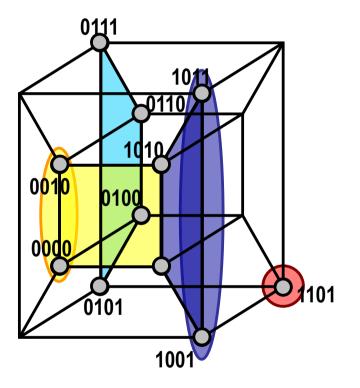
- ◆ Reduce 0**0 to nothing.
- Reduce β = *0*0 to β' = 00*0.
- Reduce $\varepsilon = 1*01$ to $\varepsilon' = 1101$.
- \bullet Cover is: { β' , γ , δ , ϵ' }.

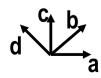


40

Example of reshape

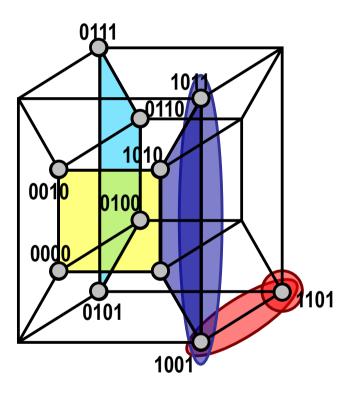
- \bullet Reshape $\{\beta', \delta\}$ to: $\{\beta, \delta'\}$.
 - ▲Where δ' = 10*1.
- \bullet Cover is: { β , γ , δ ', ϵ '}.

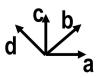




Example of second expansion

- ♦ Expand δ' = 10*1 to δ = 10**.
- Expand ε' = 1101 to ε = 1*01.





Example Summary of the steps taken by MINI

Expansion:

- \triangle Cover: {α,β,γ,δ,ε}.
- ▲ Prime, redundant, minimal w.r. to scc.

Reduction:

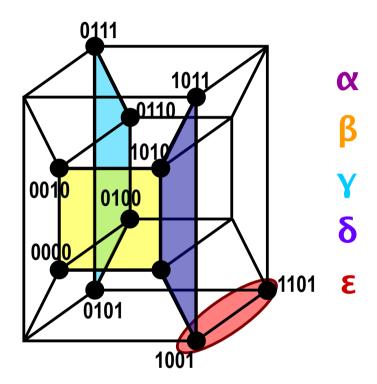
- α eliminated.
- \triangle β = *0*0 reduced to β ' = 00*0.
- \triangle ϵ = 1*01 reduced to ϵ ' = 1101.
- ▲ Cover: {β', γ,δ,ε'}.

♦ Reshape:

 \blacktriangle { β ', δ } reshaped to: { β , δ '} where δ ' = 10*1.

Second expansion:

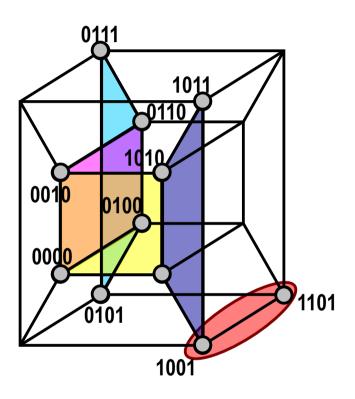
- \triangle Cover: {β,γ,δ,ε}.
- ▲ Prime, irredundant.



Example Summary of the steps taken by ESPRESSO

◆ Expansion:

- \triangle Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
- ▲ Prime, redundant, minimal w.r. to scc.
- Irredundant:
 - \triangle Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - ▲ Prime, irredundant.



Rough comparison of minimizers

- MINI
 - ▲ Iterate EXPAND, REDUCE, RESHAPE
- ◆ Espresso
 - ▲ Iterate EXPAND, IRREDUNDANT, REDUCE
- Espresso guarantees an irredundant cover
 - **▲** Because of the irredundant operator
- MINI may return irredundant covers, but can guarantee only minimality w.r.to single implicant containment

Expand Naïve implementation

- For each implicant
 - ▲ For each care literal
 - **▼** Raise it to don't care if possible
 - ▲ Remove all implicants covered by expanded implicant
- ◆ Issues
 - ▲ Validity check of expansion
 - **▲** Order of expansion

Validity check

- **◆** Espresso, MINI
 - **▲** Check intersection of expanded implicant with OFF-set
 - ▲ Requires complementation
- Presto
 - ▲ Check inclusion of expanded implicant in the union of the ON-set and DC-set
 - ▲ Reducible to recursive tautology check

Ordering heuristics

 Expand the cubes that are unlikely to be covered by other cubes

◆ Selection:

- **▲** Compute vector of column sums
- ▲ Weight: inner product of cube and vector
- ▲ Sort implicants in ascending order of weight

Rationale:

▲ Low weight correlates to having few 1s in densely populated columns

Example

10 10 10 01 10 10 10 01 10 10 10 01

Ordering:

▲ Vector: [3 1 3 1 3 1]^T

▲ Weights: (9, 7, 7, 7)

Select second implicant.

Example (2)

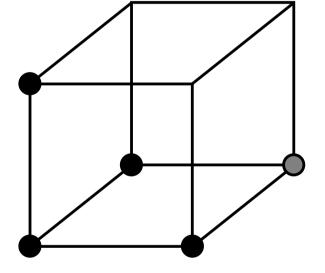
α 10 10 10

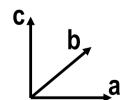
β 01 10 10

Y 10 01 10

δ 10 10 01

DC 01 01 10





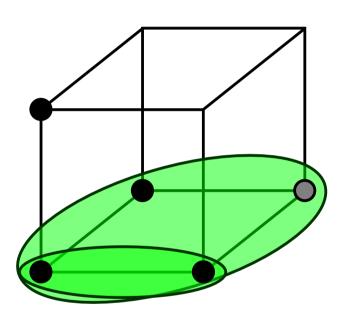
Example (3)

◆ OFF-set:

```
01 11 01
11 01 01
```

- ◆ Expand 01 10 10:
 - ▲11 10 10 valid.
 - ▲11 11 10 valid.
 - ▲11 11 11 invalid.
- **◆** Update cover to:

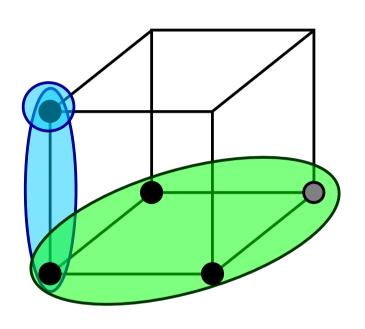
11 11 10 10 10 01



Example (4)

- **◆** Expand 10 10 01:
 - ▲11 10 01 invalid.
 - ▲10 11 01 invalid.
 - ▲10 10 11 valid.
- **◆** Expanded cover:

11 11 10 10 10 11



Expand heuristics in ESPRESSO

- Special heuristic to choose the order of literals
- Rationale:
 - ▲ Raise literals so that the expanded implicant
 - **▼** Covers a maximal set of cubes
 - **▼** Overlaps with a maximal set of cubes
 - **▼** The implicant is as large as possible
- Intuitive argument
 - ▲ Pair implicant to be expanded with other implicants, to check the fruitful directions for expansion

Reduce

- Sort implicants
 - ▲ Heuristics: sort by descending weight
 - **▲** Opposite to the heurstic sorting for expand
- Maximal reduction can be determined exactly
- ◆ Theorem:
 - ▲ Let α be in F and Q = F U D { α } Then, the maximally reduced cube is: $\dot{\alpha} = \alpha \cap \text{supercube (Q'_α)}$

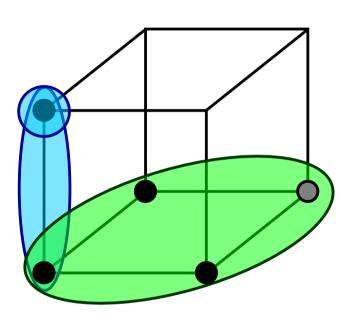
55

Example

◆ Expand cover:

- **◆** Select first implicant:
 - ▲ Cannot be reduced.
- **◆** Select second implicant:
 - ▲ Reduced to 10 10 01
- **◆** Reduced cover:

11 11 10 10 10 01



Irredundant cover

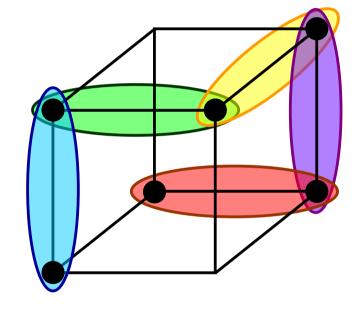
α 10 10 11

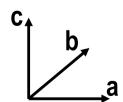
β 11 10 01

y 01 11 01

δ 01 01 11

ε 11 01 10





Irredundant cover

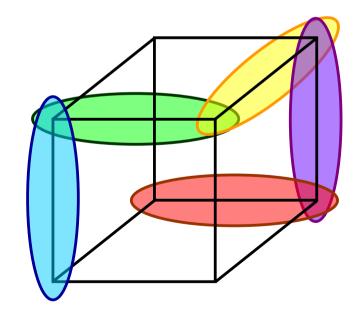
- Relatively essential set E^r
 - ▲ Implicants covering some minterms of the function not covered by other implicants
 - ▲ Important remark: we do not know all the primes!
- ◆ Totally redundant set R^t
 - ▲ Implicants covered by the relatively essentials
- ◆ Partially redundant set R^p
 - ▲ Remaining implicants

Irredundant cover

- ◆ Find a subset of R^p that, together with E^r covers the function
- Modification of the tautology algorithm
 - ▲ Each cube in R^p is covered by other cubes
 - ▲ Find mutual covering relations
- Reduces to a covering problem
 - ▲ Apply a heuristic algorithm.
 - ▲ Note that even by applying an exact algorithm, a minimum solution may not be found, because we do not have all primes.

Example

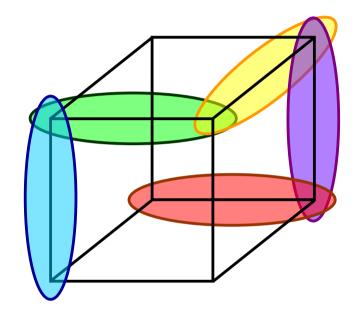
$$\blacklozenge E^r = \{ \alpha, \varepsilon \}$$



Example (2)

Covering relations:

- $\triangle \beta$ is covered by $\{\alpha, \gamma\}$.
- \triangle is covered by $\{\beta, \delta\}$.
- $\triangle \delta$ is covered by $\{y, \varepsilon\}$.
- ◆Minimum cover: **y** U E^r



ESPRESSO algorithm in short

- Compute the complement
- Extract essentials
- ◆ Iterate
 - ▲ Expand, irredundant and reduce
- **◆** Cost functions:
 - \triangle Cover cardinality ϕ_1
 - \triangle Weighted sum of cube and literal count φ_2

ESPRESSO algorithm in detail

```
espresso(F,D) {
    R = complement(F U D);
    F = expand(F,R);
    F = irredundant(F,D);
    E = essentials(F,D);
    F = F - E; D = D \cup E;
    repeat {
            \phi_2 = cost(F);
            repeat {
                 \phi_1 = |F|;
                 F = reduce(F,D);
                 F = expand(F,R);
                 F = irredundant(F,D);
           } until (|F| \ge \phi_1);
            F = last\_gasp(F,D,R);
    } until (cost(F) \geq \phi_2);
    F = F \cup E; D = D - E;
    F = make_sparse(F,D,R);
```

Heuristic two-level minimization Summary

- Heuristic minimization is iterative
- Few operators are applied to covers
- Underlying mechanism
 - **▲** Cube operation
 - ▲ Unate recursive mechanism
- Efficient algorithms

65