
Heuristic Two-level Logic Optimization

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed
© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

!Objective
!Data structures for logic optimization
!Data representation and encoding

(c) Giovanni De Micheli 3

Some more background

!Function f (x1, x2, …., xi, …., xn)

!Cofactor of f with respect to variable xi

! fxi = f (x1, x2, …., 1, …., xn)

!Cofactor of f with respect to variable xi’

! fxi’ = f (x1, x2, …., 0, …., xn)

!Boole’s expansion theorem:
! f (x1, x2, …., xi, …., xn) = xi fxi + xi’ fx’i
!Also credited to Claude Shannon

(c) Giovanni De Micheli 4

Example

!Function: f = ab + bc + ac

!Cofactors:
!fa = b + c
!fa’ = bc

!Expansion:
!f = a fa + a’fa’ = a(b + c) + a’bc

(c) Giovanni De Micheli 5

Unateness

!Function f (x1, x2, …., xi, …., xn)

!Positive unate in xi when:
!fxi ≥ fxi’

!Negative unate in xi when:
!fxi ≤ fxi’

!A function is positive/negative unate when
positive/negative unate in all its variables

(c) Giovanni De Micheli 6

Operators

!Function f (x1, x2, …., xi, …., xn)

!Boolean difference of f w.r.t. variable xi:
!∂f/∂xi ≡ fxi Å fxi’

!Consensus of f w.r.t. variable xi:
!Cxi ≡ fxi

. fxi’

!Smoothing of f w.r.t. variable xi:
!Sxi ≡ fxi + fxi’

(c) Giovanni De Micheli 7

Example
f = ab + bc + ac

!The Boolean difference ∂f/∂a = fa Å fa’ = b’c + bc’

! The consensus Ca = fa
. fa’ = bc

!The smoothing Sa ≡ fa + fa’ = b + c

b
a

c

(c) Giovanni De Micheli 8

Generalized expansion

!Given:
!A Boolean function f.
!Orthonormal set of functions:
fi, i = 1, 2, … , k

!Then:
! f = ∑i

k fi × ffi

!Where ffi is a generalized cofactor.

!The generalized cofactor is not unique, but satisfies:
! f × fi Í ffiÍ f + fi’

(c) Giovanni De Micheli 9

Example

!Function: f = ab + bc + ac

!Basis: f1 = ab and f2 = a’ + b’.

!Bounds:
!ab Í ff1Í 1
!a’bc + ab’c Í ff2Í ab + bc + ac

!Cofactors: ff1 = 1 and ff2 = a’bc + ab’c.
f = f1ff1 + f2ff2

= ab1 + (a’ + b’)(a’bc + ab’c)
= ab + bc + ac

(c) Giovanni De Micheli 10

Generalized expansion theorem

!Given:
!Two function f and g.
!Orthonormal set of functions: fi , i=1,2,…,k
!Boolean operator !

!Then:
! f ! g = ∑i

k fi × (ffi! gfi)

!Corollary:
! f ! g = xi × (fxi! gxi) + xi’ × (fxi’! gxi’)

(c) Giovanni De Micheli 11

Matrix representation of logic covers

!Representations used by logic minimizers

!Different formats
!Usually one row per implicant

!Symbols:
!0, 1, * , …

!Encoding:

(c) Giovanni De Micheli 12

Advantages of positional cube notation

!Use binary values:
!Two bits per symbols
!More efficient than a byte (char)

!Binary operations are applicable
!Intersection – bitwise AND
!Supercube – bitwise OR

!Binary operations are very fast and can be
parallelized

(c) Giovanni De Micheli 13

Example

! f = a’d’ + a’b + ab’ + ac’d

(c) Giovanni De Micheli 14

Cofactor computation

!Cofactor of α w.r. to β
!Void when α does not intersect β
!a1 + b1’ a2 + b2’ … an + bn’

!Cofactor of a set C = {γi} w.r. to β:
!Set of cofactors of γi w.r. to β

(c) Giovanni De Micheli 15

Example f = a’b’ + ab

!Cofactor w.r. to 01 11
!First row – void
!Second row – 11 01

!Cofactor fa = b

10 10
01 01

01 11
10 10

00 10 void

01 01

01 01
10 00
11 01

(c) Giovanni De Micheli 16

Multiple-valued-input functions

! Input variables can take many values

!Representations:
!Literals: set of valid values
!Function = sum of products of literals

!Positional cube notation can be easily extended to mvi

!Key fact
!Multiple-output binary-valued functions represented as mvi

single-output functions

(c) Giovanni De Micheli 17

Example

!2-input, 3-output function:
!f1 = a’b’ + ab
!f2 = ab
!f3 = ab’ + a’b

!Mvi representation:

(c) Giovanni De Micheli 18

Module 2

!Objective
!Operations on logic covers
!Application of the recursive paradigm
!Fundamental mechanisms used inside minimizers

(c) Giovanni De Micheli 19

Operations on logic covers

!Recursive paradigm
!Expand about a mv-variable
!Apply operation to co-factors
!Merge results

!Unate heuristics
!Operations on unate functions are simpler
!Select variables so that cofactors become unate functions

!Recursive paradigm is general and applicable to different
data structures
!Matrices and binary decision diagrams

(c) Giovanni De Micheli 20

Tautology

!Check if a function is always TRUE

!Recursive paradigm:
!Expend about a mvi variable
! If all cofactors are TRUE, then the function is a tautology

!Unate heuristics
! If cofactors are unate functions, additional criteria to determine

tautology
!Faster decision

(c) Giovanni De Micheli 21

Recursive tautology

!TAUTOLOGY:
!The cover matrix has a row of all 1s. (Tautology cube)

!NO TAUTOLOGY:
!The cover has a column of 0s. (A variable never takes a value)

!TAUTOLOGY:
!The cover depends on one variable, and there is no column of 0s

in that field

!Decomposition rule:
!When a cover is the union of two subcovers that depend on

disjoint sets of variables, then check tautology in both subcovers

(c) Giovanni De Micheli 22

Example
f = ab + ac + ab’c’ + a’

!Select variable a

!Cofactor w.r. to a’ is

11 11 11 – Tautology.

!Cofactor w.r. to a is:

11 01 11

11 11 01

11 10 10

10 11 11

01 01 11
01 11 01

10 11 11
01 10 10

10 11 11
01 00 00

01 11 11

11 11 11
10 00 00

00 01 11
00 11 01
00 10 10
00 11 11

01 01 11
01 11 01
01 10 10

11 01 11
11 11 01
11 10 10

a
bc

(c) Giovanni De Micheli 23

11 01 11

00 10 00

Example (2)

!Select variable b

!Cofactor w.r. to b’ is

!No column of 0 - Tautology

!Cofactor w.r. to b:

!Function is a TAUTOLOGY

11 10 11

11 01 11
11 11 01
11 10 10

00 01 00

11 01 11
11 01 01
11 00 10

11 00 11
11 10 01
11 10 10

11 11 11
11 11 01
11 11 01
11 11 10

11 11 01
11 11 10

Has row of 1s

11 01 11
11 11 01
11 10 10

(c) Giovanni De Micheli 24

Containment

!Theorem:
"A cover F contains an implicant α if and only if

Fα is a tautology

!Consequence:
"Containment can be verified by the tautology

algorithm

(c) Giovanni De Micheli 25

!Check covering of bc : 11 01 01.

!Take the cofactor:

!Tautology – bc is contained by f.

Example
f = ab + ac + a’

a
bc

01 11 11
01 11 11
10 11 11

(c) Giovanni De Micheli 26

Complementation

!Recursive paradigm
!f’ = x f’x + x’ f’x’

!Steps:
!Select variable
!Compute co-factors
!Complement co-factors

!Recur until cofactors can be complemented in a
straightforward way

(c) Giovanni De Micheli 27

Termination rules

!The cover F is void
!Hence its complement is the universal cube

!The cover F has a row of 1s
!Hence F is a tautology and its complement is void

!The cover F consists of one implicant.
!Hence the complement is computed by DeMorgan’s law

!All implicants of F depend on a single variable, and there is
not a column of 0s.
!The function is a tautology, and its complement is void

(c) Giovanni De Micheli 28

Unate functions

!Theorem:
! If f is positive unate in x, then

" f’ = f’x + x’ f’x’

! If f is negative unate in x, then
" f’ = x f’x + f’x’

!Consequence:
! Complement computation is simpler
! Follow only one branch in the recursion

!Heuristics
!Select variables to make the cofactor unate

(c) Giovanni De Micheli 29

Example
f = ab + ac + a’

!Select binate variable a

!Compute cofactors:
!Fa’ is a tautology, hence F’a’ is void.
!Fa yields:

11 01 11
11 11 01

a
bc

(c) Giovanni De Micheli 30

Example (2)

!Select unate variable b

!Compute cofactors:
!Fab is a tautology, hence F’ab is void
!Fab’ = 11 11 01 and its complement is 11 11 10

!Re-construct complement:
!11 11 10 intersected with Cube(b’) = 11 10 11 yields 11 10 10
!11 10 10 intersected with Cube(a) = 01 11 11 yields 01 10 10

!Complement: F’ = 01 10 10

(c) Giovanni De Micheli 31

Example (3)

!Recursive search:

Fa’ = TAUT
COMP = ø

Fab’ = c
COMP = c’

Fab = TAUT
COMP = ø

a’

bb’

a

Complement: a b’c’

(c) Giovanni De Micheli 32

Boolean cover manipulation
summary

!Recursive methods are efficient operators for logic
covers
!Applicable to matrix-oriented representations
!Applicable to recursive data structures like BDDs

!Good implementations of matrix-oriented recursive
algorithms are still very competitive
!Heuristics tuned to the matrix representations

(c) Giovanni De Micheli 33

Module 3

!Objectives
!Heuristic two-level minimization
!The algorithms of ESPRESSO

(c) Giovanni De Micheli 34

Heuristic logic minimization

!Provide irredundant covers with “reasonably small” sizes

!Fast and applicable to many functions
!Much faster than exact minimization

!Avoid bottlenecks of exact minimization
!Prime generation and storage
!Covering

!Motivation
!Use as internal engine within multi-level synthesis tools

(c) Giovanni De Micheli 35

Heuristic minimization -- principles

!Start from initial cover
!Provided by designer or extracted from hardware language model

!Modify cover under consideration
!Make it prime and irredundant
!Perturb cover and re-iterate until a small irredundant cover is

obtained

!Typically the size of the cover decreases
!Operations on limited-size covers are fast

(c) Giovanni De Micheli 36

Heuristic minimization - operators

!Expand
!Make implicants prime
!Removed covered implicants

!Reduce
!Reduce size of each implicant while preserving cover

!Reshape
!Modify implicant pairs: enlarge one and reduce the other

! Irredundant
!Make cover irredundant

(c) Giovanni De Micheli 37

Example

!Initial cover
! (without positional cube notation)

(c) Giovanni De Micheli 38

Example

"Set of all primes

a
bc

d

α 0 * * 0 1

ζ * 1 0 1 1
ε 1 * 0 1 1
δ 1 0 * * 1
γ 0 1 * * 1
β * 0 * 0 1

0111

1011
0110

0010

0000

0101

1001

1101

0100

1010

1000

(c) Giovanni De Micheli 39

Example of expansion

" Expand 0000 to α = 0**0.
" Drop 0100, 0010, 0110 from the cover.

" Expand 1000 to β = *0*0.
" Drop 1010 from the cover.

" Expand 0101 to γ = 01**.
" Drop 0111 from the cover.

" Expand 1001 to δ = 10**.
" Drop 1011 from the cover.

" Expand 1101 to ε = 1*01.

" Cover is: {α,β,γ,δ,ε}. a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010

1000

(c) Giovanni De Micheli 40

Example of reduction

!Reduce 0**0 to nothing.

!Reduce β = *0*0 to β’ = 00*0.

!Reduce ε = 1*01 to ε’ = 1101.

!Cover is: {β’,γ,δ,ε’}.

a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010

(c) Giovanni De Micheli 41

Example of reshape

!Reshape {β’, δ} to: {β, δ’}.
!Where δ’ = 10*1.

!Cover is: {β,γ,δ’,ε’}.

a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010

(c) Giovanni De Micheli 42

Example of second expansion

!Expand δ’ = 10*1 to δ = 10**.

!Expand ε’ = 1101 to ε = 1*01.

a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010

(c) Giovanni De Micheli 43

Example
Summary of the steps taken by MINI

! Expansion:
! Cover: {α,β,γ,δ,ε}.
! Prime, redundant, minimal w.r. to scc.

! Reduction:
! α eliminated.
! β = *0*0 reduced to β’ = 00*0.
! ε = 1*01 reduced to ε’ = 1101.
! Cover: {β’,γ,δ,ε’}.

! Reshape:
! {β’, δ} reshaped to: {β, δ’} where δ’ = 10*1.

! Second expansion:
! Cover: {β,γ,δ,ε}.
! Prime, irredundant.

α

ε
δ
γ
β

0111

1011
0110

0010

0000

0101

1001

1101

0100

1010

0111

1011
0110

0010

0000

0101

1001

1101

0100

1010

(c) Giovanni De Micheli 44

Example
Summary of the steps taken by ESPRESSO

!Expansion:
!Cover: {α,β,γ,δ,ε}.
!Prime, redundant, minimal w.r. to scc.

! Irredundant:
!Cover: {β,γ,δ,ε}.
!Prime, irredundant.

a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010

(c) Giovanni De Micheli 45

Rough comparison of minimizers

!MINI
! Iterate EXPAND, REDUCE, RESHAPE

!Espresso
! Iterate EXPAND, IRREDUNDANT, REDUCE

!Espresso guarantees an irredundant cover
!Because of the irredundant operator

!MINI may return irredundant covers, but can guarantee
only minimality w.r.to single implicant containment

(c) Giovanni De Micheli 46

Expand
Naïve implementation

!For each implicant
!For each care literal

! Raise it to don’t care if possible

!Remove all implicants covered by expanded implicant

! Issues
!Validity check of expansion
!Order of expansion

(c) Giovanni De Micheli 47

Validity check

!Espresso, MINI
!Check intersection of expanded implicant with OFF-set
!Requires complementation

!Presto
!Check inclusion of expanded implicant in the union of the ON-set

and DC-set
!Reducible to recursive tautology check

(c) Giovanni De Micheli 48

Ordering heuristics

!Expand the cubes that are unlikely to be covered by other
cubes

!Selection:
!Compute vector of column sums
!Weight: inner product of cube and vector
!Sort implicants in ascending order of weight

!Rationale:
!Low weight correlates to having few 1s in densely populated

columns

(c) Giovanni De Micheli 49

Example

! f = a’b’c’ + ab’c’ + a’bc’ + a’b’c

DC-set = abc’

!Ordering:
!Vector: [3 1 3 1 3 1]T

!Weights: (9, 7, 7, 7)

!Select second implicant.

10 10 10
01 10 10

10 10 01
10 01 10

(c) Giovanni De Micheli 50

Example (2)

b
a

c

α 10 10 10

δ 10 10 01

DC 01 01 10

γ 10 01 10
β 01 10 10

(c) Giovanni De Micheli 51

Example (3)

!OFF-set:

!Expand 01 10 10:
!11 10 10 valid.
!11 11 10 valid.
!11 11 11 invalid.

!Update cover to:

01 11 01
11 01 01

11 11 10
10 10 01

(c) Giovanni De Micheli 52

Example (4)

!Expand 10 10 01:
!11 10 01 invalid.
!10 11 01 invalid.
!10 10 11 valid.

!Expanded cover:

11 11 10
10 10 01

11 11 10
10 10 11

(c) Giovanni De Micheli 53

Expand heuristics in ESPRESSO

!Special heuristic to choose the order of literals

!Rationale:
!Raise literals so that the expanded implicant

! Covers a maximal set of cubes
! Overlaps with a maximal set of cubes
! The implicant is as large as possible

! Intuitive argument
!Pair implicant to be expanded with other implicants, to check the

fruitful directions for expansion

(c) Giovanni De Micheli 55

Reduce

!Sort implicants
!Heuristics: sort by descending weight
!Opposite to the heurstic sorting for expand

!Maximal reduction can be determined exactly

!Theorem:
!Let α be in F and Q = F U D – { α }

Then, the maximally reduced cube is:
ά = α ∩ supercube (Q’α)

(c) Giovanni De Micheli 56

Example

!Expand cover:

!Select first implicant:
!Cannot be reduced.

!Select second implicant:
!Reduced to 10 10 01

!Reduced cover:

11 11 10
10 10 11

11 11 10
10 10 01

(c) Giovanni De Micheli 57

Irredundant cover

b
a

c

α 10 10 11

δ 01 01 11
γ 01 11 01
β 11 10 01

ε 11 01 10

(c) Giovanni De Micheli 58

Irredundant cover

!Relatively essential set Er

! Implicants covering some minterms of the function not covered
by other implicants

! Important remark: we do not know all the primes!

!Totally redundant set Rt

! Implicants covered by the relatively essentials

!Partially redundant set Rp

!Remaining implicants

(c) Giovanni De Micheli 59

Irredundant cover

!Find a subset of Rp that, together with Er covers the
function

!Modification of the tautology algorithm
!Each cube in Rp is covered by other cubes
!Find mutual covering relations

!Reduces to a covering problem
!Apply a heuristic algorithm.
!Note that even by applying an exact algorithm, a minimum

solution may not be found, because we do not have all primes.

(c) Giovanni De Micheli 60

Example

!Er = {α, ε}

!Rt = !

!Rp = {β, γ, δ}

α 10 10 11

δ 01 01 11
γ 01 11 01
β 11 10 01

ε 11 01 10

(c) Giovanni De Micheli 61

Example (2)

!Covering relations:
!β is covered by {α, γ}.
!γ is covered by {β, δ}.
!δ is covered by {γ, ε}.

!Minimum cover: γ U Er

(c) Giovanni De Micheli 62

ESPRESSO algorithm in short

!Compute the complement

!Extract essentials

! Iterate
!Expand, irredundant and reduce

!Cost functions:
!Cover cardinality φ1

!Weighted sum of cube and literal count φ2

(c) Giovanni De Micheli 63

ESPRESSO algorithm in detail
espresso(F,D) {

R = complement(F U D);
F = expand(F,R);
F = irredundant(F,D);
E = essentials(F,D);
F = F – E; D = D U E;
repeat {

f2 = cost(F);
repeat {

f1 = |F |;
F = reduce(F,D);
F = expand(F,R);
F = irredundant(F,D);

} until (|F | ≥ f1);
F = last_gasp(F,D,R);

} until (cost(F) ≥ f2);
F = F U E; D = D – E;
F = make_sparse(F,D,R);

}

(c) Giovanni De Micheli 65

Heuristic two-level minimization
Summary

!Heuristic minimization is iterative

!Few operators are applied to covers

!Underlying mechanism
!Cube operation
!Unate recursive mechanism

!Efficient algorithms

