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Module 1

!Objective
!Data structures for logic optimization
!Data representation and encoding 
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Some more background

!Function f ( x1, x2, …., xi, …., xn) 

!Cofactor of f with respect to variable xi

! fxi = f ( x1, x2, …., 1, …., xn)

!Cofactor of f with respect to variable xi’

! fxi’ = f ( x1, x2, …., 0, …., xn)

!Boole’s expansion theorem:
! f ( x1, x2, …., xi, …., xn) = xi fxi + xi’ fx’i
!Also credited to Claude Shannon
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Example

!Function: f = ab + bc + ac

!Cofactors:
!fa = b + c
!fa’ = bc

!Expansion:
!f = a fa + a’fa’ = a(b + c) + a’bc
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Unateness

!Function f ( x1, x2, …., xi, …., xn) 

!Positive unate in xi when:
!fxi ≥ fxi’

!Negative unate in xi when:
!fxi ≤ fxi’

!A function is positive/negative unate when 
positive/negative unate in all its variables
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Operators

!Function f ( x1, x2, …., xi, …., xn) 

!Boolean difference of f w.r.t. variable xi:
!∂f/∂xi ≡ fxi Å fxi’

!Consensus of f w.r.t. variable xi:
!Cxi ≡ fxi

. fxi’

!Smoothing of f w.r.t. variable xi:
!Sxi ≡ fxi + fxi’
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Example
f = ab + bc + ac

!The Boolean difference ∂f/∂a = fa Å fa’ = b’c + bc’

! The consensus Ca = fa
. fa’ = bc

!The smoothing Sa ≡ fa + fa’ = b + c

b
a

c
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Generalized expansion

!Given:
!A Boolean function f.
!Orthonormal set of functions:
fi, i = 1, 2, … , k

!Then:
! f = ∑i

k fi × ffi

!Where ffi is a generalized cofactor.

!The generalized cofactor is not unique, but satisfies:
! f × fi Í ffiÍ f + fi’
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Example

!Function: f = ab + bc + ac

!Basis: f1 = ab and f2 = a’ + b’.

!Bounds:
!ab Í ff1Í 1
!a’bc + ab’c Í ff2Í ab + bc + ac

!Cofactors: ff1 = 1 and ff2 = a’bc + ab’c.
f = f1ff1 + f2ff2

= ab1 + (a’ + b’)(a’bc + ab’c)
= ab + bc + ac
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Generalized expansion theorem

!Given:
!Two function f and g.
!Orthonormal set of functions: fi ,  i=1,2,…,k
!Boolean operator !

!Then:
! f ! g = ∑i

k fi × (ffi! gfi)

!Corollary:
! f ! g = xi × (fxi! gxi) + xi’ × (fxi’! gxi’)
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Matrix representation of logic covers

!Representations used by logic minimizers

!Different formats
!Usually one row per implicant

!Symbols:
!0, 1, * , …

!Encoding:
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Advantages of positional cube notation

!Use binary values:
!Two bits per symbols
!More efficient than a byte (char)

!Binary operations are applicable
!Intersection – bitwise AND
!Supercube – bitwise OR

!Binary operations are very fast and can be 
parallelized
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Example

! f = a’d’ + a’b + ab’ + ac’d
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Cofactor computation

!Cofactor of α w.r. to β
!Void when α does not intersect β
!a1 + b1’ a2 + b2’ …   an + bn’

!Cofactor of a set C = {γi} w.r. to β:
!Set of cofactors of γi w.r. to β
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Example    f = a’b’ + ab

!Cofactor w.r. to 01   11
!First row – void
!Second row – 11   01

!Cofactor  fa = b

10 10
01 01

01 11
10 10

00 10 void

01 01

01 01
10 00
11 01
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Multiple-valued-input functions

! Input variables can take many values

!Representations:
!Literals: set of valid values
!Function = sum of products of literals

!Positional cube notation can be easily extended to mvi

!Key fact
!Multiple-output binary-valued functions represented as mvi 

single-output functions
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Example

!2-input, 3-output function:
!f1 = a’b’ + ab
!f2 = ab
!f3 = ab’ + a’b

!Mvi representation:
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Module 2

!Objective
!Operations on logic covers
!Application of the recursive paradigm
!Fundamental mechanisms used inside minimizers
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Operations on logic covers

!Recursive paradigm
!Expand about a mv-variable
!Apply operation to co-factors
!Merge results

!Unate heuristics
!Operations on unate functions are simpler
!Select variables so that cofactors become unate functions

!Recursive paradigm is general and applicable to different 
data structures
!Matrices and binary decision diagrams
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Tautology

!Check if a function is always TRUE

!Recursive paradigm:
!Expend about a mvi variable
! If all cofactors are TRUE, then the function is a tautology

!Unate heuristics
! If cofactors are unate functions, additional criteria to determine 

tautology
!Faster decision
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Recursive tautology

!TAUTOLOGY:
!The cover matrix has a row of all 1s.  (Tautology cube)

!NO TAUTOLOGY:
!The cover has a column of 0s. (A variable never takes a value)

!TAUTOLOGY:
!The cover depends on one variable, and there is no column of 0s 

in that field

!Decomposition rule:
!When a cover is the union of two subcovers that depend on 

disjoint sets of variables, then check tautology in both subcovers



(c)  Giovanni De Micheli 22

Example
f = ab + ac + ab’c’ + a’

!Select variable a

!Cofactor w.r. to a’ is

11  11  11 – Tautology.

!Cofactor w.r. to a is:

11    01    11

11    11    01

11    10    10

10     11     11

01     01     11
01     11     01

10     11     11
01     10     10

10     11     11
01     00     00

01     11     11

11     11     11
10     00     00

00     01     11
00     11     01
00     10     10
00     11     11

01     01     11
01     11     01
01     10     10

11     01     11
11     11     01
11     10     10

a
bc
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11     01     11

00     10     00

Example (2)

!Select variable b

!Cofactor w.r. to b’ is

!No column of 0 - Tautology

!Cofactor w.r. to b:

!Function is a TAUTOLOGY

11     10     11

11     01     11
11     11     01
11     10     10

00     01     00

11     01     11
11     01     01
11     00     10

11     00     11
11     10     01
11     10     10

11     11     11
11     11     01   
11     11     01
11     11     10

11     11     01
11     11     10

Has row of 1s

11     01     11
11     11     01
11     10     10
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Containment

!Theorem:
"A cover F contains an implicant α if and only if  

Fα is a tautology

!Consequence:
"Containment can be verified by the tautology 

algorithm
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!Check covering of bc : 11  01  01.

!Take the cofactor:

!Tautology – bc is contained by f.

Example
f = ab + ac + a’

a
bc

01     11     11
01     11     11
10     11     11
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Complementation

!Recursive paradigm
!f’ =  x f’x + x’ f’x’

!Steps:
!Select variable
!Compute co-factors
!Complement co-factors

!Recur until cofactors can be complemented in a 
straightforward way
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Termination rules

!The cover F is void
!Hence its complement is the universal cube

!The cover F has a row of 1s
!Hence F is a tautology and its complement is void

!The cover F consists of one implicant.
!Hence the complement is computed by DeMorgan’s law

!All implicants of F depend on a single variable, and there is 
not a column of 0s.
!The function is a tautology, and its complement is void
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Unate functions

!Theorem:
! If f is positive unate in x, then

" f’ = f’x + x’ f’x’

! If f is negative unate in x, then
" f’ =  x f’x + f’x’

!Consequence:
! Complement computation is simpler
! Follow only one branch in the recursion

!Heuristics
!Select variables to make the cofactor unate
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Example
f = ab + ac + a’

!Select binate variable a

!Compute cofactors:
!Fa’ is a tautology, hence F’a’ is void.
!Fa yields:

11     01     11
11     11     01

a
bc
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Example (2)

!Select unate variable b

!Compute cofactors:
!Fab is a tautology, hence F’ab is void
!Fab’ = 11  11  01 and its complement is 11  11  10

!Re-construct complement:
!11  11  10 intersected with Cube(b’) = 11  10  11 yields 11  10  10
!11  10  10 intersected with Cube(a) = 01  11  11 yields 01  10  10

!Complement: F’ = 01  10  10
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Example (3)

!Recursive search:

Fa’ = TAUT
COMP = ø

Fab’ = c
COMP = c’

Fab = TAUT
COMP = ø

a’

bb’

a

Complement: a b’c’
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Boolean cover manipulation
summary

!Recursive methods are efficient operators for logic 
covers
!Applicable to matrix-oriented representations
!Applicable to recursive data structures like BDDs

!Good implementations of matrix-oriented recursive 
algorithms are still very competitive
!Heuristics tuned to the matrix representations
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Module 3

!Objectives
!Heuristic two-level minimization
!The algorithms of ESPRESSO
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Heuristic logic minimization

!Provide irredundant covers with “reasonably small” sizes

!Fast and applicable to many functions
!Much faster than exact minimization

!Avoid bottlenecks of exact minimization
!Prime generation and storage
!Covering

!Motivation
!Use as internal engine within multi-level synthesis tools
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Heuristic minimization -- principles

!Start from initial cover
!Provided by designer or extracted from hardware language model

!Modify cover under consideration
!Make it prime and irredundant
!Perturb cover and re-iterate until a small irredundant cover is 

obtained

!Typically the size of the cover decreases
!Operations on limited-size covers are fast 
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Heuristic minimization - operators

!Expand
!Make implicants prime
!Removed covered implicants

!Reduce
!Reduce size of each implicant while preserving cover

!Reshape
!Modify implicant pairs: enlarge one and reduce the other

! Irredundant
!Make cover irredundant
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Example

!Initial cover 
! (without positional cube notation)
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Example

"Set of all primes

a
bc

d

α 0 * * 0     1

ζ * 1 0 1     1
ε 1 * 0 1     1
δ 1 0 * *     1
γ 0 1 * *     1
β * 0 * 0     1

0111

1011
0110

0010

0000

0101

1001

1101

0100

1010

1000
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Example of expansion

" Expand 0000 to α = 0**0.
" Drop 0100, 0010, 0110 from the cover.

" Expand 1000 to β = *0*0.
" Drop 1010 from the cover.

" Expand 0101 to γ = 01**.
" Drop 0111 from the cover.

" Expand 1001 to δ = 10**.
" Drop 1011 from the cover.

" Expand 1101 to ε = 1*01.

" Cover is: {α,β,γ,δ,ε}. a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010

1000
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Example of reduction

!Reduce 0**0 to nothing.

!Reduce β = *0*0 to β’ = 00*0.

!Reduce ε = 1*01 to ε’ = 1101.

!Cover is: {β’,γ,δ,ε’}.

a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010
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Example of reshape

!Reshape {β’, δ} to: {β, δ’}.
!Where δ’ = 10*1.

!Cover is: {β,γ,δ’,ε’}.

a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010
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Example of second expansion

!Expand δ’ = 10*1 to δ = 10**.

!Expand ε’ = 1101 to ε = 1*01.

a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010
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Example
Summary of the steps taken by MINI

! Expansion:
! Cover: {α,β,γ,δ,ε}.
! Prime, redundant, minimal w.r. to scc.

! Reduction:
! α eliminated.
! β = *0*0 reduced to β’ = 00*0.
! ε = 1*01 reduced to ε’ = 1101.
! Cover: {β’,γ,δ,ε’}.

! Reshape:
! {β’, δ} reshaped to: {β, δ’} where δ’ = 10*1.

! Second expansion:
! Cover: {β,γ,δ,ε}.
! Prime, irredundant.

α

ε
δ
γ
β

0111

1011
0110

0010

0000

0101

1001

1101

0100

1010

0111

1011
0110

0010

0000

0101

1001

1101

0100

1010
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Example
Summary of the steps taken by ESPRESSO

!Expansion:
!Cover: {α,β,γ,δ,ε}.
!Prime, redundant, minimal w.r. to scc.

! Irredundant:
!Cover: {β,γ,δ,ε}.
!Prime, irredundant.

a
bc

d

1001

0111

1011
0110

0010

0000

0101 1101

0100

1010
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Rough comparison of minimizers

!MINI
! Iterate EXPAND, REDUCE, RESHAPE

!Espresso
! Iterate EXPAND, IRREDUNDANT, REDUCE

!Espresso guarantees an irredundant cover
!Because of the irredundant operator

!MINI may return irredundant covers, but can guarantee 
only minimality w.r.to single implicant containment
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Expand
Naïve implementation

!For each implicant
!For each care literal

! Raise it to don’t care if possible

!Remove all implicants covered by expanded implicant

! Issues
!Validity check of expansion
!Order of expansion
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Validity check

!Espresso, MINI
!Check intersection of expanded implicant with OFF-set
!Requires complementation

!Presto
!Check inclusion of expanded implicant in the union of the ON-set 

and DC-set
!Reducible to recursive tautology check
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Ordering heuristics

!Expand the cubes that are unlikely to be covered by other 
cubes

!Selection:
!Compute vector of column sums
!Weight: inner product of cube and vector
!Sort implicants in ascending order of weight

!Rationale:
!Low weight correlates to having few 1s in densely populated 

columns
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Example

! f = a’b’c’ + ab’c’ + a’bc’ + a’b’c

DC-set = abc’

!Ordering:
!Vector: [3 1 3 1 3 1]T

!Weights: (9, 7, 7, 7)

!Select second implicant.

10     10     10
01     10     10

10     10     01
10     01     10
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Example (2)

b
a

c

α 10  10  10

δ 10  10  01

DC   01 01 10

γ 10  01  10
β 01  10  10
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Example (3)

!OFF-set:

!Expand 01  10  10:
!11  10  10 valid.
!11  11  10 valid.
!11  11  11 invalid.

!Update cover to:

01     11     01
11     01     01

11     11     10
10     10     01
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Example (4)

!Expand 10  10  01:
!11  10  01 invalid.
!10  11  01 invalid.
!10  10  11 valid.

!Expanded cover:

11     11     10
10     10     01

11     11     10
10     10     11
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Expand heuristics in ESPRESSO

!Special heuristic to choose the order of literals

!Rationale:
!Raise literals so that the expanded implicant

! Covers a maximal set of cubes
! Overlaps with a maximal set of cubes
! The implicant is as large as possible

! Intuitive argument
!Pair implicant to be expanded with other implicants, to check the 

fruitful directions for expansion
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Reduce

!Sort implicants
!Heuristics: sort by descending weight
!Opposite to the heurstic sorting for expand

!Maximal reduction can be determined exactly

!Theorem:
!Let α be in F and Q = F U D – { α }

Then, the maximally reduced cube is:
ά = α ∩ supercube (Q’α)
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Example

!Expand cover:

!Select first implicant:
!Cannot be reduced.

!Select second implicant:
!Reduced to 10  10  01

!Reduced cover:

11     11     10
10     10     11

11     11     10
10     10     01
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Irredundant cover

b
a

c

α 10  10  11

δ 01  01  11
γ 01  11  01
β 11  10  01

ε 11  01  10
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Irredundant cover

!Relatively essential set Er

! Implicants covering some minterms of the function not covered 
by other implicants

! Important remark: we do not know all the primes!

!Totally redundant set Rt

! Implicants covered by the relatively essentials

!Partially redundant set Rp

!Remaining implicants
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Irredundant cover

!Find a subset of Rp that, together with Er covers the 
function

!Modification of the tautology algorithm
!Each cube in Rp is covered by other cubes
!Find mutual covering relations

!Reduces to a covering problem
!Apply a heuristic algorithm.
!Note that even by applying an exact algorithm, a minimum 

solution may not be found, because we do not have all primes.
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Example

!Er = {α, ε}

!Rt = !

!Rp = {β, γ, δ}

α 10  10  11

δ 01  01  11
γ 01  11  01
β 11  10  01

ε 11  01  10
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Example (2)

!Covering relations:
!β is covered by {α, γ}.
!γ is covered by {β, δ}.
!δ is covered by {γ, ε}.

!Minimum cover: γ U Er
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ESPRESSO algorithm in short

!Compute the complement

!Extract essentials 

! Iterate
!Expand, irredundant and reduce

!Cost functions:
!Cover cardinality φ1

!Weighted sum of cube and literal count φ2
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ESPRESSO algorithm in detail
espresso(F,D) {

R = complement(F U D);
F = expand(F,R);
F = irredundant(F,D);
E = essentials(F,D);
F = F – E;  D = D U E;
repeat {

f2 = cost(F);
repeat {

f1 = |F |;
F = reduce(F,D);
F = expand(F,R);
F = irredundant(F,D);

} until (|F | ≥ f1);
F = last_gasp(F,D,R);

} until (cost( F ) ≥ f2);
F = F U E;  D = D – E;
F = make_sparse(F,D,R);

}
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Heuristic two-level minimization
Summary

!Heuristic minimization is iterative

!Few operators are applied to covers

!Underlying mechanism
!Cube operation
!Unate recursive mechanism

!Efficient algorithms


